SISTEM PAKAR PENENTUAN KESESUAIAN LAHAN BERDASARKAN FAKTOR PENGHAMBAT TERBESAR (MAXIMUM LIMITATION FACTOR) UNTUK TANAMAN PANGAN
DOI:
https://doi.org/10.9744/informatika.10.1.23-31Keywords:
land suitability, fuzzy inference systems, expert systemAbstract
Knowledge about suitability of the land and the plants can minimalize harvest plant problem. The spread of information technology and digital era also change the ways to explain and distribute information and knowledge used for recognize land suitability, with the creation of expert system. Process to recognize land suitability in this system using 19 parameter included physical and chemistry characteristics, and also nature factors such as temperature and rain fall. For all of these parameters, there are 2 complementary parameters to replace data about tekstur, drainase, and slope. Object in this research are 14 kinds of food plants. This system using Fuzzy Inference Systems (FIS) method for processing data. User can choose trapesium or Gauss function for fuzzificy the data. Based on actual values of the land, this system will determine the suitability of the land for food plants and for specific kinds of food plants. This system also determines about limitation factors for the land and gives some managerial suggestion for handling those factors. The results of this system also included about plants grow requirement and suitability location on 2 districts at East Java Province. Abstract in Bahasa Indonesia: Pengetahuan para pelaksana pertanian dalam menentukan kesesuaian lahan dengan jenis tanaman yang akan ditanam tentunya akan dapat meminimalisasikan berbagai permasalahan panen yang dapat terjadi. Perubahan yang terjadi dalam bidang teknologi informasi dan era digital, juga telah mendukung dan merubah cara penyebaran informasi dan pengetahuan, antara lain melalui penggunaan sistem pakar. Sistem pakar ini menggunakan 19 parameter, termasuk parameter fisik dan kimia, serta faktor alam seperti suhu dan curah hujan, dalam menentukan kesesuaian lahan. Di antara seluruh parameter yang digunakan, terdapat 2 parameter pengganti yang dapat digunakan untuk menggantikan parameter tekstur, drainase, dan lereng. Objek yang digunakan dalam penelitian ini meliputi 14 jenis tanaman pangan. Metode yang digunakan adalah Fuzzy Inference Systems (FIS), dimana pengguna dapat memilih jenis fungsi trapesium atau gauss yang akan digunakan untuk memproses data. Berdasarkan data aktual, sistem ini akan menentukan tingkat kesesuaian lahan yang akan digunakan oleh suatu jenis tanaman, berikut dengan faktor penghambat yang ada serta saran manajerial yang dapat diterapkan untuk mengatasi keberadaan faktor penghambat, dan lokasi yang sesuai untuk suatu jenis tanaman tertentu. Penentuan lokasi terbatas pada 2 propinsi di Jawa Timur. Kata kunci: kesesuaian lahan, fuzzy inference systems, system pakar.Downloads
Published
2010-12-02
How to Cite
Sevani, N., Marimin, M., & Sukoco, H. (2010). SISTEM PAKAR PENENTUAN KESESUAIAN LAHAN BERDASARKAN FAKTOR PENGHAMBAT TERBESAR (MAXIMUM LIMITATION FACTOR) UNTUK TANAMAN PANGAN. Jurnal Informatika, 10(1), 23–31. https://doi.org/10.9744/informatika.10.1.23-31
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).