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Abstract: The Correlation Power Analysis (CPA) attack is an attack on cryptographic devices, especially 
smart cards. The results of the attack are correlation traces. Based on the correlation traces, an evaluation is 
done to observe whether significant peaks appear in the traces or not. The evaluation is done manually, by 
experts. If significant peaks appear then the smart card is not considered secure since it is assumed that the 
secret key is revealed. We develop a method that objectively detects peaks and decides which peak is 
significant. We conclude that using the Gaussian curve fitting method, the subjective qualification of the peak 
significance can be objectified. Thus, better decisions can be taken by security experts. We also conclude that the Gaussian 
curve fitting method is able to show the influence of peak sizes, especially the width and height, to a significance of a 
particular peak. 
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INTRODUCTION 

 
Cryptographic devices [1] are electronic devices 

that implement a cryptographic algorithm and that 
store keys. An example of a cryptographic device is a 
smart card. A smart card is a device that has the same 
size as a credit card. It is able to store data and to 
process data by using an integrated chip. To process 
data, the chip performs a cryptographic algorithm that 
employs a secret key. Any attempt to extract the keys 
stored in the cryptographic device in an unauthorized 
way is called an attack. One class of attacks that poses 
serious threat to the security of cryptographic devices 
are the side-channel attacks. A side-channel attack is 
an attack applying information gained from the 
physical implementation of a cryptographic device, 
for example timing information, power consumption, 
and electromagnetic leaks. 

One type of side-channel attacks is Correlation 
Power analysis (CPA) attacks. This type of attack is a 
refinement of another type of side channel attacks 
called Differential Power Analysis (DPA) attack, that 
was first introduced in 1999 in [2]. The CPA attack, 
which was introduced [3] in 2004, is a multi-bit DPA 
taking into account the linear relationship between the 
power consumption curve and the Hamming model. 
In general, this attack exploits the fact that the power 
consumption of a cryptographic device depends on 
the data it processes and the operation it performs [1]. 
By conducting this attack, an attacker may obtain the 
secret keys used in the cryptographic algorithm 
employed by the device.  

In this paper, we focus on the CPA attack on 

smart cards. CPA is relatively easy to be carried out 

and has a high success rate. It is not necessary for the 

attacker to have detailed knowledge about the smart 

cards. It is sufficient to know the steps of the 

cryptographic algorithm that is executed by the smart 

cards. That is why a lot of research is done to improve 

the security of smart cards against this attack. 

The result of the CPA attack is represented by 

correlation traces [3]. Based on the correlation traces, 

an evaluation is done to observe whether significant 

peaks appear in the traces or not. If significant peaks 

appear then the smart card is not considered secure 

since it is assumed that the secret key is revealed. If 

there are no significant peaks, the smart card is secure. 

The higher and steeper the peaks, the stronger the 

attack and the less secure the smart card is. 

The difficulty is to objectively decide whether a 

peak is significant enough to be called a peak. To 

support the decision making process, we develop a 

method to detect peaks and to decide which peak is 

significant.  

 

THE CPA ATTACK 

 

The CPA attack is based on two important 

concepts, i.e., leakage function and bit/byte trace.  

A leakage function [4] is an abstraction used to 

represent the physical output of a side-channel, 

monitored by some measurement setup. The input of 

a leakage function is a plaintext that will be processed 

by a cryptographic device. In the CPA attack, the 

output of this leakage function is the power con-

sumption of the cryptographic device sampled with a 

fixed sampling frequency while processing the input 

plaintext. In this project, the output of the leakage 

function is called a power trace. 
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Practically, a power trace from a smart card is 

obtained by measuring the power consumption of the 

smart card while processing a binary input. The power 

trace is not the end result of the process, but the 

intermediate result. For example, if a smart card 

employs some cryptographic algorithm with several 

rounds where each round uses one specific secret key, 

the power trace is taken after one round is finished. A 

byte trace [1] is an approach to monitor a predictable 

byte during the course of the process. In the context of 

a power analysis, the byte trace approach is applied to 

check leakage of some cryptographic device. The 

result of the byte trace approach is a correlation 

coefficient between the input and the power trace at 

one time. All the resulted correlation coefficient is 

called correlation traces. 

The investigation to check whether the smart 

card is leaking is done based on the correlation trace 

plot (see Figure 1). If there is a high peak on the plot, 

it means that the investigated byte has a high 

correlation with the power consumption at the time 

point at which this high peak appears. This fact 

already shows that there is some information leaking 

from the smart card. 

 

  
 

Figure 1: The plot of correlation coefficient between the 

input and the power trace. 

 

More detailed explanation about the steps of the 

CPA attack can be found in [1]. 

 

RELATED WORKS 

 

[5] discusses methods to evaluate and compare 

side-channel attacks. Some simple numerical exam-

ples of leakage function and some illustration how the 

functions could be evaluated and understood are given 

in [6]. The methods are based on two metrics: 

information theoretic and security metric. However, 

these two metrics cannot be used to solve our problem 

since the metrics need a lot of power traces, where 

each is obtained using different sets of input 

plaintexts. The more power traces are provided, the 

more accurate the results are. The fact is, power trace 

measurements are very expensive. Thus, carrying a lot 

of measurements to get results for one smart card is 

not practical for companies. 

A method to detect peaks is also discussed in [7] 

by using short-time FFT. The method also includes 

noise removal techniques. The method is developed 

for MALDI data, which has different behavior from 

our data. 

[8] and [9] introduces peak detection methods 

using wavelet transformation. The methods consider 

some characteristic shapes to identify peaks. Howe-

ver, the characteristic shapes introduced in this paper 

cannot be adapted in our problem.  

A method to quantify peak is discussed in [10]. 

The method is developed for mass spectrum related to 

protein mixtures. The mass spectrum contains peaks 

corresponding to proteins in a sample. A statistical 

mixture model is developed to quantify peaks. 

However, the quantification mostly depends on peak 

height.  

 

THE SIGNIFICANT PEAK DETECTION 

APPROACH 
 

Our approach to determine whether a peak is 

significant or not consists of two main methods. We 

first develop a method to assign a score to each peak 

found in a correlation trace. This method is based on 

the Gaussian curve fitting method. Second, based on 

the resulted peak scores, we determine whether a peak 

is significant or not using the Absolute Score Distance 

computation and the clustering analysis. 
 

The Gaussian Curve Fitting Method 
 

We develop a method based on the Gaussian 

curve fitting method to give a score to each peak 

found in a correlation trace. 

Since the correlation traces typically have too 

many sample points, we downsample it first. The 

resulted downsampled correlation trace is put in a 

vector called local_maxima. The main idea of this 

approach is to fit a curve to the local_maxima vector 

of each correlation trace and qualify each peak found 

in the new curve. We choose a sum of several 

Gaussian functions to fit our correlation trace local 

maxima. The Gaussian function is formulated as 

follows:  

f(x) = 

2
)

2
(

c

bx

ea




   (1) 

with a is the height of the curve, b is the center of the 

curve, and c is the width of the curve. 

Since the values of a and b can be obtained from 

the correlation trace, we only have to estimate c 

before we can apply the curve fitting function. 
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Suppose that we have a set of points {(x1, y1), … 

(xn, yn)} that we want to fit to a curve. Consider 

Equation 1, suppose that a=y
t
 and b=x

m
. The value of 

c is estimated by using the following steps:  

1. Compute c
i
 for each (xi, yi) with given a and b 

using the following formula which is based on 

Equation 1.  

c(i) = 

)
)(

log(

|)(|

a

iy

bix




 (2) 

2. Take the mean and the standard deviation of c
i
, 

denoted by c  and S, respectively.  

3. Form a vector V1 that contains all values of c
i
 that 

are less or equal than c . Take the mean of V1 and 

denote it with  v1    

4. Form a vector V2 that contains all values of c
i
 that 

are less or equal than c + S. Take the mean of V2 

and denote it with  v2    

5. Set the value c as  

c = 
2

21 vv 
  (3) 

After we get c, we are ready to apply the 

Gaussian Curve Fitting to our correlation traces. The 

general algorithm we use to apply the method is given 

below. 

The input of the algorithm are X, which is a 

correlation trace with X(i) is the correlation coefficient 

for sample i, and window_size, the size of the sliding 

window. The output are the peak location, the peak 

height, the peak area, the peak inverse width, the 

scores of all peaks found, and the normalized scores 

of all peaks found. The steps of the algorithm are as 

follows:  

1. Apply the sliding window of size window_size to 

the absolute value of the correlation trace X and 

find the global maximum of all values within the 

window. Slide the window without overlapping 

and repeat the same operation until the window 

reaches the last sample. Form a vector local_ 

maxima that contains the resulted global maxi-

mum. By performing this process, we replace all 

values within a window with the global maximum 

of values within the window. The global maxi-

mum is chosen to represent values within one 

window because we are interested in significant 

peaks.  

2. Determine shorter length vectors from the vector 

local_maxima such that each smaller vector 

consists of at least one maximum and minimum 

values. Each smaller vector belongs to one 

Gaussian curve fitting function and should contain 

at least three members. The shorter length vectors 

are forms by using the following steps:  
(a) Suppose that local_maxima = {l1, l2,…,lq}  

with l
i
 the ith member of the local_maxima 

vector and q the length of local_maxima. 
Suppose that we start from l

r
 with l

r−1
≤l

r
. 

Form the uth shorter length vector SVu = {lr-1, 
lr}.  

(b) If l
r+1

≤l
r
 and l

r+1
<l

r+2
, set SVu = {lr-1, 

lr,…,lr+1} and stop forming SV
u
. Otherwise, 

repeat this step for {lr+2, lq} until the condition 
holds.  

(c) Form SVu+1 = {lw-1, lw,} with l
w−1

 is the last 

member of SV
u
. Go to Step (b) for checking 

the condition for l
w+1

.  

See Figure 2.  
3. Determine the value of a and b for each shorter 

length vector, see Equation 1.  
4. Estimate the value of c for each shorter length 

vector, see Equation 3, by using the steps 
explained previously.  

5. Determine the peak location for each shorter 
length vector. Since the position of the peak need 
not to be a sample point, we increase the 
resolution with a factor 10.  

6. Obtain the peak properties, i.e., peak height and 

inverse width, from the value of a and 
c

1
, 

respectively.  
7. Compute the area below each Gaussian function 

to get the peak area. Suppose that {lv, lv+1,…,lv+m} 
is a shorter length vector that belongs to one 
Gaussian function. The area A is computed as:  

A = dxea
mv

v

l

l

c
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8. Since the peak properties found have different 
scale values, rescale each peak property so that the 
values are between 0 and 1. This can be done 
using the following way. Suppose Yp = {y1,p, y2,p, 
…,ym,p} is a set of peak property values with m the 
number of peaks found, p is referring to a peak 
property, and i is referring to the ith peak found, 
rescaled_yi,p is computed as rescaled_yi,p = 

)max(

,

p

pi

Y

y
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9. Suppose p
1
, p

2
, and p

3
 are the three peak 

properties defined previously, namely the peak 

height, the peak area, and the peak inverse width. 

Also suppose that S={s1, s2,…,sm} is a set peak 

scores with m the number of peaks found and i is 

referring to the ith peak. Compute the peak score 

s
i
 by using the following formula:  

 si = rescaled_yi,p1 . rescaled_yi,p2 .  

     rescaled_yi,p3 .   (6) 
 

The scores obtained are between 0 and 1.  

10. Compute the normalized peak score norm_s
i
 for 

the ith peak found as  

norm_si = 




m

j

j

i

s

s

1

 (7) 

 

Figure 2: The plot of the local maxima and the shorter 

length vector division. 

 

Figure 3 gives an example of the local maxima 

plot of a correlation trace along with the curve fitted to 

it.  

  

Figure 3: The plot of the local maxima and a curve fitted to 

it 
To maintain the stability of the resulted scores 

that can reduce because of the data down sampling, 

we employ four different window sizes to get the 

scores. We start the score calculation from the highest 

window size to the lowest. Therefore, the result from 

this method is a matrix with each row consist of a set 

of four scores (each score obtained by applying one 

window size) for each peak found in the correlation 

trace. 

 

The Peak Score Evaluation 

 

After we obtain scores for all peaks found in a 

correlation trace, we would like to investigate whether 

the peak obtaining the highest score is a significant 

peak or not. We develop two methods to check 

properties of the highest score peak when it is 

compared with other peaks. The decision whether a 

peak is significant or not is made based on the results 

given by all three methods. Thus, the methods do not 

work independently. The methods are explained 

below. 

 

Average score distance 

 

One characteristic of a peak to be a significant 

peak is that the peak score should be a lot greater then 

those of the other peaks. Therefore, we compute the 

average score distance between the highest peak score 

with other peak scores in one correlation trace. The 

computation is done as follows. 

Suppose that Si = {si,1, si,2, si,3, si,4} is a 

multivariate score of the ith peak after window1, 

window2, window3, and window4 are applied, 

respectively. The average score distance is computed 

by the following steps:  

1. Compute the Euclidean distance di,j of every S
i
 

and Sj with i ≠j and i,j {1,…,m} as 

      di,j = 
2

1
4

1

2

,, )( 









k

kjki ss  (8) (8) 

2. Compute the average Euclidean distance avdist
i
 of 

the ith peak and all other peak by using the 

following formula  

 avdisti = 
1

1

,






m

d
m

k

ki

 (9) 

3. Compute the average score distance D as  

 D = 
)max(

)max(

absscore

avdist
 (10) 

 

Cluster analysis 

 

We consider that cluster analysis is useful to 

show that a peak is significant or not. If a peak is 

significant, then we assume the peak score is really 

different with the rest of the scores. By applying a 

cluster analysis, we would like to show that if a peak 
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is significant then its score becomes a unique member 

of a cluster, while the other scores are clustered in one 

different cluster. 

In practice, we use cluster analysis on the multi-

variate peak scores obtained, to form two clusters of 

peak scores within one correlation trace. The peak 

score clustering is done using the Statgraphics 

Centurion software. At the moment we use Ward’s 

method (see [11]) in clustering the peak scores, with 

Euclidean distance as a method to compute the 

distance between two peak scores. Other clustering 

method may also be used without significant result 

differences. If the highest peak score is a unique 

member of a cluster, then the possibility that the 

highest peak score is significant becomes more likely. 

We consider that a significant peak should have 

a score of at least 0.50. The score of 0.50 is taken 

based on the idea of probability theory. A probability 

of 0.50 means there is an equal chance that an event to 

happen or not. We perform more analysis to the 

clustering analysis results using the following steps:  

1. Consider the cluster containing the highest score 

peak  

2. If the cluster has one member and the score of the 

member is higher than 0.50, then the member is a 

significant peak.  

3. If the cluster has more than one members, check 

the scores of all members. If all members’ scores 

are higher than 0.50, then the highest score peak is 

a significant peak. If not, then the highest score 

peak is not significant.  

 

EXPERIMENTAL RESULTS 

 

We were provided with three data sets by 

Brightsight B.V., a security evaluator laboratory 

located in Delft, the Netherlands. The data sets were 

sampled from a smart card, with a sampling fre-

quency of 500 MHz, while processing input plain-

texts. The operation used in the process is a 16 rounds 

of an XOR operation defined as c = p + k, with c a 

ciphertext, p an input plaintext, and k a secret key. 

Each data set consists of power traces and 16 

correlation traces taken from 250000 time points; 

each correlation trace obtained from each processing 

round. 

The first data set, called Data_No Countermea-

sures, was obtained from a smart card without any 

countermeasures. The second and third data sets, 

called Data_Few Dummy Cycles and Data_More 

DummyCycles, respectively, are data sets obtained 

with some dummy cycles. Dummy cycles are 

processes that are more or less identical to each other. 

Practically, the dummy cycles do nothing and they are 

irrelevant to the process carried out by the smart card. 

The dummy cycles are inserted randomly based on 

hardware random function, to make the smart card 

more secure. 

We apply the Gaussian curve fitting method to 

the 16 correlation traces obtained from the byte trace 

approach of each data set. The results from this step 

for each correlation trace are a list of all peaks found 

in the trace along with the peak properties and the 

score for each peak. Table 1 shows the result using 

one window size, i.e., 1250 samples, on the first 

correlation trace of the Data_NoCountermeasures.  

In Table 1, it is shown that there are 15 peaks 

found in the correlation trace. All the peak properties 

are normalized so that the values are between 0 and 1. 

The fifth peak is the highest scored one, with a score 

of 0.7073. We can observe that using the Gaussian 

curve fitting method, we can replace the original 

correlation trace with scores. 

 
Table 1: The peak properties and scores of the first 

correlation trace obtained from the byte trace approach of 

Data_NoCountermeasures with window size 1250 samples 

Peak 
Loca-

tion 

Rescaled 
Normalized 

score Height Area 
Inverse 

width 

  1 7 0.2211 0.2495 0.4795 0.0214 

 2 16.5 0.1922 0.1214 0.9495 0.0181 

 3 30.5 0.1924 0.3623 0.3251 0.0184 

 4 46 0.1869 0.1559 0.8307 0.0197 

 5 62.5 1.0000 1.0000 0.8697 0.7073 

 6 79.5 0.2183 0.2147 0.6266 0.0239 

 7 92 0.2286 0.2423 0.7204 0.0325 

 8 104.5 0.2055 0.2104 0.5424 0.0191 

 9 113.5 0.1975 0.1230 1.0000 0.0198 

 10 122.5 0.2184 0.2085 0.6832 0.0253 

 11 135 0.2175 0.2695 0.5075 0.0242 

 12 147.5 0.2116 0.1753 0.9528 0.0279 

 13 157.5 0.1797 0.1498 0.6917 0.0151 

 14 172 0.1742 0.3344 0.2591 0.0123 

 15 190.5 0.1829 0.2893 0.3517 0.0151 

 

After that we also apply the evaluation methods 

to determine average score distances and to decide 

whether the highest score peak is significant or not. In 

this section, we provide the evaluation method results 

on peak scores computed for four window sizes, i.e., 

[2200 1500 800 100] samples. The results are given in 

Table 2, 3, and 4. Each table contains average score 

distance, significant peak decisions, the location of the 

highest score peak, and the height of the highest score 

peak, for 16 correlation traces taken from each 

Data_NoCountermeasures, Data_FewDummyCycles, 

and Data_MoreDummyCycles. The significant peak 

decisions give values 0 and 1. The value 0 indicates 

that the highest score peak is not significant, and the 

value 1 indicates the opposite.  
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Table 2: The results of the evaluation methods on peak 

scores computed based on four window sizes, i.e., [2200 

1500 800 100] of Data_NoCountermeasures 

Correlation 

trace 

Average score 

distance 

Significant 

peak 

Peak 

location 

Peak 

height 

  0 0.9729 1 89639 0.5190 

 1 0.9567 1 90565 0.4114 

 2 0.9556 1 91583 0.4233 

 3 0.8246 1 92436 0.2592 

 4 0.8653 1 93547 0.2800 

 5 0.5932 1 94586 0.1558 

 6 0.5081 0 95879 0.1712 

 7 0.9366 1 43276 0.5813 

 8 0.9707 1 89606 0.5189 

 9 0.8723 1 90585 0.2915 

 10 0.8287 1 91981 0.2819 

 11 0.9404 1 92573 0.3531 

 12 0.7578 1 93548 0.2274 

 13 0.7975 1 94507 0.2327 

 14 0.6413 1 95513 0.2080 

 15 0.9351 1 96931 0.3913 

 
Table 3: The results of the evaluation methods on peak 

scores computed based on four window sizes, i.e., [2200 

1500 800 100] of Data_FewDummyCycles 

Correlation 

trace 

Average score 

distance 

Significant 

peak 

Peak 

location 

Peak 

height 

  0 0.6430 1 97915 0.1579 

 1 0.7275 1 98886 0.1858 

 2 0.3843 0 91428 0.1226 

 3 0.5103 0 101022 0.1654 

 4 0.4147 0 30352 0.1418 

 5 0.3066 0 103754 0.1206 

 6 0.2936 0 242664 0.1309 

 7 0.5546 0 56889 0.1702 

 8 0.5130 0 97915 0.1493 

 9 0.3032 0 225744 0.1344 

 10 0.6733 1 100026 0.1740 

 11 0.5690 0 101294 0.1493 

 12 0.6350 1 102099 0.1552 

 13 0.4200 0 182481 0.1337 

 14 0.4610 0 104363 0.1364 

 15 0.7368 1 105027 0.2041 

 

Table 2 shows that among all 16 correlation 

traces of Data_NoCountermeasures, only one correla-

tion trace does not have a significant peak. The other 

correlation traces have a signifiant peak with the 

average score distance generally higher than 0.80. We 

also observe that the peak locations in general are 

around the same point, which is the time point 

between 90000 and 97000. Based on the results, we 

conclude that the smart card is not secure.  

From Table 3, we observe that most of the 

significant peaks disappear because of the dummy 

cycles addition. It also shows that the average score 

distance of the highest score peaks found in the 

Data_FewDummyCycles are mostly greater than 0.50 

and most of them are not significant. The peak 

locations now are also not centralized in a certain time 

point range. This shows us that adding some dummy 

cycles improve the security of the smart card. 

 
Table 4: The results of the evaluation methods on peak 

scores computed based on four window sizes, i.e., [2200 

1500 800 100] of Data_MoreDummyCycles 

Correlation 

trace 

Average score 

distance 

Significant 

peak 

Peak 

location 

Peak 

height 

  0 0.3267 0 165057 0.1184 

 1 0.3334 0 22086 0.1189 

 2 0.4001 0 225990 0.1358 

 3 0.4148 0 220618 0.1273 

 4 0.3594 0 109355 0.1261 

 5 0.3282 0 74586 0.1371 

 6 0.5354 1 164374 0.1425 

 7 0.3141 0 179148 0.1250 

 8 0.3305 0 59876 0.1160 

 9 0.3379 0 93696 0.1303 

 10 0.5304 0 113245 0.1495 

 11 0.4730 0 96061 0.1437 

 12 0.4179 0 142481 0.1281 

 13 0.3600 0 112019 0.1311 

 14 0.3029 0 106447 0.1282 

 15 0.4706 0 82370 0.1355 

 

The data Data_MoreDummyCycles was obtain-

ned from the smart card with dummy cycles inserted 

in every 4 to 20 cycles. This means that the data 

contains more dummy cycles than the Data_Few 

DummyCycles. Consistent with this fact, the results 

on Table 4 show that now only one correlation trace 

has a significant peak with a rather low average score 

distance. This shows that, even though this counter-

measure setting does not make the smart card 

completely secure, it is more secure than the other 

settings.  

 

CONCLUDING REMARKS 

 

We conclude that the Gaussian curve fitting 

method is able to give scores to each peak found in a 

correlation trace. The scores represent the original 

correlation trace. The average score distance is able to 

represent the peak significance by a number, while the 

cluster analysis method is able to represent the peak 

significance by showing to which cluster the highest 

peak score belongs to. Using the Gaussian curve 

fitting method, the subjective qualification of the peak 

significance can be objectified. Thus, better decisions 

can be taken by security experts. We also conclude 

that the Gaussian curve fitting method is able to show 

the influence of peak sizes, especially the width and 

height, to a significance of a particular peak. 
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