Yupit Sudianto, Febriliyan Samopa


Face detection is one of the interesting research area. Majority of this research implemented on a computer. Development of face detection on a computer requires a significant investment costs. In addition to having to spend the cost of procurement of computers, is also required for operational cost such as electricity use, because the computer requires large power/watt.This research is proposed to build a face detection system using Arduino. The system will be autonomous, in other word the role of computer will be replaced by Arduino. Arduino is used is Arduino Mega 2560 with specifications microcontroller AT MEGA 2560, a speed of 16 MHz, 256 KB flash memory, 8 KB SRAM, 4 KB EEPROM. So not all face detection algorithm can be implemented on the Arduino. The limitations of memory owned by the arduino will be resolved by applying the method of template matching using the facial features in the form of a template that is shaped like a mask. Detection rate achieved in this study is 80% - 100%. Where, in the Arduino's success in identifying the face are influenced by the distance between the camera with the human face and human movement.


Arduino, face detection, embedded system.

Full Text:



  1. Banzi, M., Getting Started with Arduino. O’Reilly, 2011.
  2. Chen, C.R., Wong, W.S., dan Chiu, C.T., “A. 064 mm2 Real-Time Cascade Face Detection Design Based on Reduced Two-Field Extraction”. IEEE, Transactions on Very Large Scale Integration (VLSI) Systems, 19 (11), 2010.
  3. Colmenarez, A.J., dan Huang, T.S., Face Detection with Information-Based Maximum Disctimination. Proc, IEEE Conf, Computer Vision and Pattern Recognition, 1997, pp 782-787.
  4. Craw, I., Tock, D., dan Bennett, A., Finding Face Features. Proc, Second European Conf, Computer Vision, 1992, pp 92-96.
  5. Dai, Y., dan Nakano, Y., Face-Texture Model Based on SGLD and Its Application in Face Detection in a Color Scene. Pattern Recognition, 29(6), 1996, pp 1007-1017.
  6. Gomes, J.M., “Implementation of an intelligent sensor for measurement and prediction of solar radiation and atmospheric temperature”. IEEE, Intelligent Signal Processing (WISP). 2011.
  7. He, C., Papakonstantinou, A., dan Chen, D., A Novel SoC Architecture on FPGA for Ultra Fast Face Detection. ICCD’09, 4-7 Oct. 2009, pp. 412-418.
  8. Hori, Y., Shimizu, K., Nakamura, dan Y., Kuroda, T., “A Real-Time Multi Face Detection Technique Using Positive-Negative Lines-of-Face Template”. ICPR’04, 1, 2004, pp. 765-768.
  9. Kamal, R., Embedded Systems: Architecture, Programming and Design. McGraw-Hill, 2008.
  10. Kjeldsen, R., dan Kender, J., Finding Skin in Color Images. Proc, Second Int’l Conf, Automatics Face and Gesture Recognition, 1996, pp. 312-317.
  11. Kyrkou, C., dan Theocharides, T., “A Flexible Parallel Hardware Architecture for AdaBoost-Based Real-Time Object Detection”. VLSI, 19, 2010, pp. 1034-1047.
  12. Kyrkou, C., Ttofis, C., dan Theocharides, T., “FPGA-Accelerated Object Detection Using Edge Information”. FPL, 2011, pp. 167-170.
  13. Lai, H.C., Savvides, dan M., Chen, T., “Proposed FPGA Hardware Architecture for High Frame Rate (>100 fps) Face Detection Using Feature Cascade Classifiers”. IEEE, Biometrics: Theory, Application, and Systems, 2007.
  14. Lanitis, A., Taylor, C.J., dan Cootes, T.F., An Automatic Face Identification System Using Flexible Appearance Models. Image and Vision Computing, 13(5), 1995, pp. 393-401.
  15. Leung, T.K., Burl, M.C., dan Perona, P., Finding Faces in Cluttered Scenes Using Random Labeled Graph Matching. Proc, Fifth IEEE Int’l Conf, Computer Vision, 1995. pp. 637-644.
  16. Lew, M.S., Information Theoretic View-Based and Modular Face Detection. Proc, Second Intl’l Conf, Automatic Face and Gesture Recognition, 1996. pp. 198-203.
  17. Li, S., Liu, W., Xin, D., dan Qiao, S., “An automatic identification tracking system applied to motion analysis of industrial field”. IEEE, Electric Information and Control Engineering, 2011.
  18. McCready, R., Real-Time Face Detection on a Configurable Hardware System. ACM, FPL ’00, 2000. pp. 157-162.
  19. McKenna, S., Gong, S., dan Raja, Y., Modelling Facial Colour and Identify with Gaussian Mixtures. Pattern Recognition, 31(12), 1998. pp. 1883-1892.
  20. Negru, S., “A conceptual architecture of an arduino-based social-emotional interactive system”. IEEE, Intelligent Computer Communication and Processing. 2010.
  21. OmniVision, OV7670/0V7171 CMOS VGA (640X480) CameraChipTM Implementation Guide. OmniVision Technologies. 2005.
  22. OmniVision, OV7670/OV7171 CMOS VGA (640X480) CameraChipTM with OmniPixel® Technology. OmniVision Technologies. 2006.
  23. Osuna, E., Freund, R., dan Girosi, F., Training Support Vector Machines: An Application to Face Detection. Proc, IEEE Conf, Computer Vision and Pattern Recognition, 1997, pp. 130-136.
  24. Puspita, E., Sistem Pendeteksi dan Penjejakan Wajah Secara Real Time. Fakultas Teknologi Informasi. Institut Teknologi Sepuluh Nopember. 2004.
  25. Rajagopalan, A., Kumar, K., Karlekar, J., Mani-vasakan, R., Patil, M., Desai, U., Poonacha, P., dan Chaudhuri, S., Finding Faces in Photographs. Proc, Sixth IEEE Intl’l Conf, Computer Vision, 1988, pp. 640-645.
  26. Rowley, H., Baluja, S., dan Kanade, T., Neural Network-Based Face Detection. IEEE Trans, Pattern Analysis and Machine Intelligence, 20(1), 1998, pp. 23-38.
  27. Schneiderman, H., dan Kanade, T., Probabilistic Modeling of Local Appearance and Spatial Relationship for Object Recognition. Proc, IEEE Conf, Computer Vision and Pattern Recognition, 1998, pp. 45-51.
  28. Shalahuddin, M., Rosa, A.S., Belajar Pemrograman dengan Bahasa C++ dan Java dari Nol Menjadi Andal. Informatika Bandung, 2007.
  29. Sung, K.K., dan Poggio, T., Example-Based Learning for View-Based Human Face Detec-tion. IEEE Trans, Pattern Analysis and Machine Intelligence, 20(1), 1998, pp. 39-51.
  30. Sutoyo, T., Mulyanto, E., Suhartono, V., Nurhayati, O.D., dan Wijanarto. Teori Pengolahan Citra Digital. ANDI. 2009.
  31. Theocharides, T., “A parallel Architecture for hardware face detection”. IEEE, Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, 2006.
  32. Turk, M., dan Pentland, A., Eigenfaces for Recognition. I.Cognitive Neuroscience, 3(1), 1991, pp. 71-86.
  33. Viola, P., Jones, M.J., “Robust Real-Time Face Detection”. Kluwer Academic Publishers, International Journal of Computer Vision, 57(2), 2004, pp.137–154.
  34. Yang, G., dan Huang, T.S., Human Face Detection in Complex Background. Pattern Recognition. 27(1), 1994, pp. 53-63.
  35. Yang, J., dan Waibel, A., A Real-Time Face Tracker. Proc, Third Workshop Applications of Computer Vision, 1996, pp. 142-147.
  36. Yang, M.H., Kriegman, D., dan Ahuja, N., “Detecting faces in images: a survey”. IEEE, Transaction on Pattern, Analysis and Machine Intelligence, 24(1), 2002, pp. 34-58.
  37. Yow, K.C., dan Cipolla, R., Feature-Based Human Face Detection. Image and Vision Computing, 15(9), 1997, pp. 713-735.
  38. Yutong, Z., Guosheng, dan Y., Licheng, W., “Fast Face in Field Programmable Gate Array”. IEEE, International Conference on Digital Manufacturing & Automation. 2010.
  39. Zhang, X., Zhang, Y., dan Tian, Y., Performance Evaluation for Embedded System Based on Extension Theory. IEEE, Knowledge Acquisition and Modeling, 2008, pp. 389-391.


The Journal is published by The Institute of Research & Community Outreach - Petra Christian University. It available online supported by Directorate General of Higher Education - Ministry of National Education - Republic of Indonesia.

©All right reserved 2016.Jurnal Informatika, ISSN: 1411-0105


free hit counters
View My Stats