SEGMENTASI OBYEK PADA CITRA DIGITAL MENGGUNAKAN METODE OTSU THRESHOLDING

Slamet Imam Syafi’i, Rima Tri Wahyuningrum, Arif Muntasa




Abstract


Digital image has size and object in the form of foreground and background. To separate it, it is necessary to be conducted the image segmentation process. Otsu thresholding method is one of image segmentation method. In this research is divided into five processes, which are input image, pre-processing, segmentation, cleaning, and accuracy calculation. First process was input color images which consists of multiple objects. Second process was conversion from color image to grayscale image. Third process was automatically calculated threshold value using Otsu thresholding method, followed by binary image transformation. The fourth process, the result of third process is changed into negative image as the segmentation results, noise removal with a threshold value of 150, and morphology. The last accuracy calculation is conducted to measure proposed segmentation method performance. The experimental result have been compared to the image of Ground Truth as the direct user observation to calculate accuracy. To examine the proposed method, Weizmann Segmentation Database is used as data set. It conconsist of 30 color images. The experimental results show that 93.33% accuracy were achieved.


Keywords


Otsu thresholding method; Region properties; Segmentation; Weizmann database.

References


  1. Nabella, W. M., Sampurno, J., Nurhasanah. Analisis Citra Sinar-X Tulang Tangan Menggunakan Metode Thresholding Otsu untuk Identifikasi Osteoporosis. POSITRON, Vol. III, No. 1, hal. 12-15. 2013.
  2. Handoko, W.T., Ardhianto, E., Safriliyanto, E. Analisis dan Implementasi Image Denoising dengan Metode Normal Shrink sebagai Wavelet Thresholding Analysis. DINAMIK Jurnal Teknologi Informasi, Vol. 16, No. 1, hal. 56-63. 2011.
  3. Setiawan, A., Suryani, E., Wiharto. Segmentasi Citra Sel Darah Merah Berdasarkan Morfologi Sel untuk Mendeteksi Anemia Defisiensi Besi. Jurnal Jurusan Informatika, Universitas Sebelas Maret. 2013.
  4. Ardhianto, E., Hadikurniawati, W., Budiarso, Z. Implementasi Metode Image Subtracting dan Metode Regionprops untuk Mendeteksi Jumlah
  5. Obyek Berwarna RGB pada File Video. DINAMIK Jurnal Teknologi Informasi. Vol. 18, No.2, Hal. 91-100. 2013.
  6. Mandalasari, A.F., Uyun, S. Segmentasi Citra Medis Menggunakan Metode Otsu dan Iterasi. Tugas Akhir Teknik Informatika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga. 2013.
  7. Kumaseh, M. R., Latumakulita, L., Nainggolan, N. Segmentasi Citra Digital Ikan Menggunakan Metode Thresholding. Jurnal Ilmiah Sains, Vol. 13 No. 1. 2013.
  8. Fauzi, F., Arnia, F. Analisis Kinerja Metode Binerisasi pada Proses Pemisahan Text dari Background Menggunakan Perangkat Lunak OCR. KITEKTRO Jurnal Online Teknik Elektro. Vol.1, No.2 : 25-32, 2012.
  9. Cahyaningsih, S., Mulyono, A., Abidin, M. Deteksi Osteoporosis dengan Thresholding Metode Otsu pada Citra X-Ray Tulang Rahang. Tugas Akhir Jurusan Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim. 2010.
  10. Otsu, N. A Threshold Selection Method from Gray-Level Histogram. IEEE Transaction on Systems, Man, and Cybernetics. Vol. SMC-9, 1. 1979.
  11. Subekti, I., Purnama, I. K. E., Purnomo, M. H. Identifikasi Sel Darah Berbentuk Sabit Pada Citra Sel Darah Penderita Anemia. Tugas Akhir Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember. 2013.


Full Text: PDF

The Journal is published by The Institute of Research & Community Outreach - Petra Christian University. It available online supported by Directorate General of Higher Education - Ministry of National Education - Republic of Indonesia.

©All right reserved 2016.Jurnal Informatika, ISSN: 1411-0105

 

free hit counters
View My Stats




Copyright © Research Center Web-Dev Team